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Seasonal ARIMA models

ARIMA (p,d,q)︸ ︷︷ ︸ (P,D,Q)m︸ ︷︷ ︸
↑ ↑

Non-seasonal part Seasonal part of
of the model of the model

where m = number of observations per year.
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Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)

(1 − ϕ1B)(1 − Φ1B4)(1 − B)(1 − B4)yt = (1 + θ1B)(1 + Θ1B4)εt.
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Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)

(1 − ϕ1B)(1 − Φ1B4)(1 − B)(1 − B4)yt = (1 + θ1B)(1 + Θ1B4)εt.

All the factors can be multiplied out and the general model
written as follows:

yt = (1 + ϕ1)yt−1 − ϕ1yt−2 + (1 + Φ1)yt−4

− (1 + ϕ1 + Φ1 + ϕ1Φ1)yt−5 + (ϕ1 + ϕ1Φ1)yt−6

− Φ1yt−8 + (Φ1 + ϕ1Φ1)yt−9 − ϕ1Φ1yt−10

+ εt + θ1εt−1 + Θ1εt−4 + θ1Θ1εt−5. 4



Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the
seasonal lags of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)12 will show:
a spike at lag 12 in the ACF but no other significant spikes.
The PACF will show exponential decay in the seasonal
lags; that is, at lags 12, 24, 36, . . . .

ARIMA(0,0,0)(1,0,0)12 will show:
exponential decay in the seasonal lags of the ACF
a single significant spike at lag 12 in the PACF. 5



Point forecasts

1 Rearrange ARIMA equation so yt is on LHS.
2 Rewrite equation by replacing t by T + h.
3 On RHS, replace future observations by their forecasts,

future errors by zero, and past errors by corresponding
residuals.

Start with h = 1. Repeat for h = 2, 3, . . ..
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Prediction intervals

95% prediction interval

ŷT+h|T ± 1.96
√
vT+h|T

where vT+h|T is estimated forecast variance.

vT+1|T = σ̂2 for all ARIMA models regardless of parameters
and orders.
Multi-step prediction intervals for ARIMA(0,0,q):

yt = εt +
q∑
i=1

θiεt−i.

vT|T+h = σ̂2
1 +

h−1∑
i=1

θ2
i

 , for h = 2, 3, . . . .
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Prediction intervals

Prediction intervals increase in size with forecast horizon.
Prediction intervals can be difficult to calculate by hand
Calculations assume residuals are uncorrelated and
normally distributed.
Prediction intervals tend to be too narrow.

▶ the uncertainty in the parameter estimates has not been
accounted for.

▶ the ARIMA model assumes historical patterns will not change
during the forecast period.

▶ the ARIMA model assumes uncorrelated future errors
8



ARIMA vs ETS

Myth that ARIMA models are more general than exponential
smoothing.
Linear exponential smoothing models all special cases of
ARIMA models.
Non-linear exponential smoothing models have no
equivalent ARIMA counterparts.
Many ARIMA models have no exponential smoothing
counterparts.
ETS models all non-stationary. Models with seasonality or
non-damped trend (or both) have two unit roots; all other
models have one unit root. 9



ARIMA vs ETS

ETS models

Combination
 of components

9 ETS models with
 multiplicative errors

3 ETS models with
 additive errors and

 multiplicative
 seasonality

ARIMA models

Modelling
 autocorrelations

Potentially ∞ models

All stationary models
 Many large models

6 fully additive
 ETS models
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Equivalences

ETS model ARIMA model Parameters

ETS(A,N,N) ARIMA(0,1,1) θ1 = α − 1
ETS(A,A,N) ARIMA(0,2,2) θ1 = α + β − 2

θ2 = 1 − α
ETS(A,Ad,N) ARIMA(1,1,2) ϕ1 = ϕ

θ1 = α + ϕβ − 1 − ϕ
θ2 = (1 − α)ϕ

ETS(A,N,A) ARIMA(0,0,m)(0,1,0)m
ETS(A,A,A) ARIMA(0,1,m + 1)(0,1,0)m
ETS(A,Ad,A) ARIMA(1,0,m + 1)(0,1,0)m
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