

ETC3550/ETC5550 Applied forecasting

Week 7: ARIMA models

af.numbat.space

Outline

- 1 ARIMA models
- 2 Stationarity
- 3 Differencing

ARIMA models

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

3

Outline

- 1 ARIMA models
- 2 Stationarity
- 3 Differencing

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Transformations help to **stabilize the variance**.

For ARIMA modelling, we also need to **stabilize the mean**.

Outline

- 1 ARIMA models
- 2 Stationarity
- 3 Differencing

Differencing

Differencing

- Differencing helps to stabilize the mean.
- First differencing: *change* between consecutive observations: $y'_t = y_t y_{t-1}$.
- Seasonal differencing: change between years: $y'_t = y_t y_{t-m}$.

Your turn

- Does differencing make the Closing stock price series stationary for Amazon and Apple stocks?
- What sorts of transformations and differencing are needed to make the Gas series from aus_accommodation stationary?

Automatic differencing

Statistical tests to determine the required order of differencing.

- Augmented Dickey Fuller test: null hypothesis is that the data are **non-stationary** and non-seasonal.
- 2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are **stationary** and non-seasonal.

Seasonal strength

```
STL decomposition: y_t = T_t + S_t + R_t
Seasonal strength F_s = \max\left(0, 1 - \frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)}\right)
If F_s > 0.64, do one seasonal difference.
```

Automatic differencing

Statistical tests to determine the required order of differencing.

- Augmented Dickey Fuller test: null hypothesis is that the data are **non-stationary** and non-seasonal. H₀: non-stationary
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are **stationary** and non-seasonal. H_0 : stationary

Seasonal strength

```
STL decomposition: y_t = T_t + S_t + R_t
Seasonal strength F_s = \max \left(0, 1 - \frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)}\right)
If F_s > 0.64, do one seasonal difference.
```

Your turn

Do the unit root tests for the Gas series from aus_accommodation. Do they give the same numbers of difference as you chose?