

ETC3550/ETC5550 Applied forecasting

Week 7: ARIMA models

af.numbat.space

3 Differencing

ARIMA models

- **AR**: autoregressive (lagged observations as inputs)
 - I: integrated (differencing to make series stationary)
- MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

3 Differencing

Definition

If $\{y_t\}$ is a stationary time series, then for all *s*, the distribution of (y_t, \ldots, y_{t+s}) does not depend on *t*.

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Transformations help to **stabilize the variance**. For ARIMA modelling, we also need to **stabilize the mean**.

3 Differencing

Differencing

Differencing

Differencing helps to stabilize the mean.
First differencing: change between consecutive observations: y'_t = y_t - y_{t-1}.
Seasonal differencing: change between years:

$$y_t'$$
 = $y_t - y_{t-m}$.

Your turn

 Does differencing make the Closing stock price series stationary for Amazon and Apple stocks?
What sorts of transformations and differencing are needed to make the Gas series from aus_accommodation stationary? Statistical tests to determine the required order of differencing.

- 1 Augmented Dickey Fuller test: null hypothesis is that the data are **non-stationary** and non-seasonal.
- 2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are **stationary** and non-seasonal.

Seasonal strength

STL decomposition: $y_t = T_t + S_t + R_t$ Seasonal strength $F_s = \max \left(0, 1 - \frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)}\right)$ If $F_s > 0.64$, do one seasonal difference. Statistical tests to determine the required order of differencing.

- Augmented Dickey Fuller test: null hypothesis is that the data are **non-stationary** and non-seasonal. H₀: non-stationary
- 2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-seasonal. H₀: stationary

Seasonal strength

STL decomposition: $y_t = T_t + S_t + R_t$ Seasonal strength $F_s = \max \left(0, 1 - \frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)}\right)$ If $F_s > 0.64$, do one seasonal difference.

Your turn

Do the unit root tests for the Gas series from aus_accommodation. Do they give the same numbers of difference as you chose?